MAJORICC

MACHINE D'ASSEMBLAGE DE

VEHICULES MINIATURES

Présentation:

P1 Le processus Majoricc
P2 Schéma d'ensemble de la partie opérative
P3, 4 Poste E: montage essieux
P5, 6 Poste C: montage chassis
P7, 8 Poste S: sertissage chassis-coque
P9, 10 Poste P: transfert plaque

Schémas:

P11 Alimentation + schéma de commande des préactionneurs
P12 Alimentation + circuit de puissance pneumatique
P13 Schéma d'acquisition des entrées API

P14 Plan du pupitre de commande

P15 Bilan des composants d'automatisation

P16 Tableau d'affectation des entrées-sorties API

LE PROCESSUS MAJORICC

La matière d'oeuvre entrante du processus "MAJORICC"

La matière d'oeuvre sortante du processus "MAJORICC"

MONTAGE ESSIEUX

1A : vérin double effet (tige rentrée au repos)
Srd : capteur présence roues droites
Srg : capteur présence roues gauches

MONTAGE CHASSIS

Prise et dépose du chassis : descente montée
$2 A$: vérin double effet (tige rentrée au repos)
S20 : capteur tige rentrée (position haute)
S21: capteur tige sortie (position basse)
Déplacement horizontal : recul avance
3 A : vérin double effet (tige sortie au repos)
S30 : capteur tige sortie (position avancée)
S31 : capteur tige rentrée (position recul)

Aspiration

4A : venturi
S41 : capteur présence vide

TRANSFERT PLAQUE

Avance recul plaque

5 A : vérin double effet (tige rentrée au repos)
S50 : capteur tige rentrée
S51 : capteur tige sortie
Sch : capteur plaque en position initiale
Indexage
6A : vérin double effet
S61 : capteur tige sortie (position indexage)

SERTISSAGE

7A : vérin impacteur
S70: capteur tige rentrée (position haute)

FONCTION D'USAGE

Le poste E permet la mise en position des essieux avant et arrière sur la coque. La figure 1 résume la fonction attendue

Fig.3: Le poste E (schéma)

ARCHITECTURE DU POSTE E

Mis en réserve dans les guides du stockeur (contenance: 9 essieux par guide), les essieux sont maintenus par un cache manceuvré par le vérin double effet 1A de dépose roues (figures 2 et 3). La sortie de la tige du vérin permet la distribution simultanée d es essieux avant et arrière dans l'emplacement prévu sur la coque.

EVOLUTION TEMPORELLE ET EVENEMENTIELLE DU POSTE E

Le GRAFCET du point de vue de la partie opérative page 4 détaille les états successifs du poste E en production automatique (production normale).

LES COMPOSANTS D'AUTOMATISATION DU POSTE E

PREACTIONNEURS

Un électro-distributeur monostable 5 orifices, 2
positions est chargé de piloter, sur ordre de la partie commande, la sortie de tige du vérin R : ordre Y11 de sortie de tige.

CAPTEURS

Aucun capteur de détection de position de tige n'est utilisé, 2 capteurs de présence essieux ($\mathrm{Srg}, \mathrm{Srd}$) sont montés sur le stockeur.
DOSSIER TECHNIQUE Page 4 Système MAJORICCC

Fig 1: La fonction d'usage du poste C

FONCTION D'USAGE

Le poste C permet la mise en position du châssis sur le sous-ensemble (coque + essieux). La figure 1 résume la fonction attendue.

ARCHITECTURE DU POSTE C

Le châssis est positionné dans sa poche de la plaque porte-pièces. A l'arrivée au poste de montage, le vérin double effet 2 A portant en extrémité de tige deux ventouses sort pour plaquer les ventouses sur le chassis; le vide est alors créé par le venturi 4 A permettant la prise du châssis. Le vérin double effet d'avance 3A permet d'amener le chassis au droit de la coque (figures 2 et 3).

Fig.2: Le poste C (photo)

> EVOLUTION TEMPORELLE ET EVENEMENTIELLE DU POSTE C

Le GRAFCET du point de vue de la partie opérative page 5 détaille les états successifs du poste E en production automatique (production normale).

LES COMPOSANTS D'AUTOMATISATION DU POSTE C

PREACTIONNEURS
Trois électro-distributeurs monostables 5

Fig.3: Le poste C (schéma)
orifices, 2 positions sont chargés de piloter, sur ordre de la partie commande, la sortie de tige du vérin $2 \mathrm{~A}=$ ordre Y 21 de sortie de tige, la rentrée de tige du vérin $3 \mathrm{~A}=$ ordre Y 31 de rentrée de tige et la mise en route du venturi $4 \mathrm{~A}=$ ordre Y 41 de misen route.

CAPTEURS

Chaque vérin est équipé de 2 capteurs de position à établissement de circuit à détection magnétique (I.L.S.) chargés de transmettre à la partie commande l'information de position tige rentrée et tige sortie: capteurs S 20 (tige du vérin 2A rentrée), S21 (tige du vérin 2A sortie), S 31 (tige du vérin 3A rentrée), S 32 (tige du vérin 3A sortie).
Un détecteur de présence vide (vacuostat) est monté entre le venturi et les ventouses: détecteur à établissement de circuit S41 = signal de présence vide.

LES POSTES D'ASSEMBLAGE

POSTE C : MONTAGE CHASSIS Grafcet point de vue partie opérative

Fig 1: La fonction d'usage du poste S

FONCTION D'USAGE

Le poste S permet d'établir une liaison complète et permanente par sertissage du chassis sur le sous-ensemble (coque + essieux). La figure 1 résume la fonction attendue.

ARCHITECTURE DU POSTE S

Les quatre sous-ensembles *coque, *essieu avant, *essieu arrière, *châssis, sont positionnés dans la poche d'origine de la coque à l'arrivée sur le poste de sertissage. La sortie de tige du vérin impacteur double effet 7A permet la réalisation du sertissage par refoulement des 2 rivets moulés sur la coque (figures 2 et 3).

EVOLUTION TEMPORELLE ET

 EVENEMENTIELLE DU POSTE SLe GRAFCET du point de vue de la partie opérative page 8 détaille les états successifs du poste en production automatique (production normale).

LES COMPOSANTS D'AUTOMATISATION DU POSTE S

PREACTIONNEURS

Un électro-distributeur monostable 5 orifices,

Fig.3: Le poste S (schéma)

2 positions est chargé de piloter, sur ordre de la partie commande, la sortie de tige du vérin 7A : ordre Y71 de sortie de tige permettant d'effectuer le sertissage.

CAPTEURS

Parce que le temps de frappe du vérin 7A est très faible, il n'est équipé que d'un seul capteur de position à établissement de circuit détecteur de proximité Inductif (D.P.I.) type P.N.P. chargé de transmettre à la partie commande l'information de position tige rentrée: capteur S70 (tige du vérin 7A rentrée).

POSTE P : TRANSFERT PLAQUE

Fig 1: La fonction d'usage du poste P

Fig.2: Le poste P (photo)

Fig.3: Le poste P (schéma)

FONCTION D'USAGE

Le poste P permet le transfert de la plaque porte-pièces d'un poste au suivant (déplacement invariant) . La figure 1 résume la fonction attendue.

ARCHITECTURE DU POSTE P

La sortie de tige du vérin indexeur double effet 6A permet de mettre en liaison temporaire la tige du vérin double effet d'avance 5A. La sortie de tige de 5A permet le déplacement de la plaque d'un poste au suivant (figures 2 et 3).

EVOLUTION TEMPORELLE ET EVENEMENTIELLE DU POSTE P

Le GRAFCET du point de vue de la partie opérative page 10 détaille les états successifs du poste P en production automatique (production normale).

LES COMPOSANTS D'AUTOMA--TISATION DU POSTE P

PREACTIONNEURS

Deux électro-distributeurs monostables 5 orifices, 2 positions sont chargés de piloter, sur ordre de la partie commande, la sortie de tige du vérin 5 A et du vérin 6A: ordre Y61 de sortie de tige de 6A permettant d'effectuer l'indexage et ordre Y51 de sorti e de tige de 5A permettant d'effectuer le transfert de la plaque.

CAPTEURS

Le vérin d'indexage 6A est équipé d'un capteur de position à établissement de circuit et à détection magnétique (I.L.S.) chargé de transmettre à la partie commande le compte rendu de position tige du vérin sortie capteur S61 (tige du vérin 6A sortie).

Le vérin de transfert 5A est équipé de deux capteurs de position à établissement de circuit et à détection magnétique (I.L.S.) chargés de transmettre à la partie commande les comptes rendus de position tige du vérin rentrée ou tige du vérin sortie : capteur S 50 (tige du vérin 5 A rentrée) et capteur S 51 (tige du vérin 5A sortie).
La position initiale de la plaque est donnée par un détecteur de proximité inductif Sch.

DOSSIER TECHNIQUE

LES POSTES D'ASSEMBLAGE

POSTE P : TRANSFERT PLAQUE
 Grafcet point de vue partie opérative

Schémas

ELECTRIQUE

ALIMENTATION + CIRCUIT DE PUISSANCE PNEUMATIQUE

SCHEMA D'ACQUISITION DES ENTREES API

Schémas

PNEUMATIQUE

GRAFCET

GESTION CODEE A.P.I. TSX17-20

Gestion de l'arrêt d'urgence et du défaut

 videLoad si le bit X26 à 1 And tempo T04 écoulée Set B2
Load B2 And Sy6, $=00,8$

Load I 0,2
Or $\mathrm{B2}$
= Sy22

Load Not I 0,2
And Pulse I 0,3
= Sy21
Reset B2

Remarque :Sy21 et Sy22 sont remis à zéro automatiquement par l'A.P.I. en fin de traitement séquentiel.

Gestion du mode de marche et du défaut roues

Remarque :A l'étape 56, mise à 1 des étapes initiales du GRAFCET de production; à l'étape 59, désactivation par groupe de 8 de toutes les étapes du GRAFCET en production normale (passage en marche manuelle, état F4 du GEMMA)

Logigrammes des marches manuelles dans le désordre

PROJET "MAJORICC"
François BENIELLI

Gestion de la production normale avec ou sans sertissage : GPN

PLAN DU PUPITRE DE COMMANDE

BILAN DES COMPOSANTS D'AUTOMATISATION

POSTE E: MONTAGE ESSIEUX		
ACTIONNEURS	PREACTIONNEURS	CAPTEURS
Vérin double effet à piston magnétique Fonction: dépose des essieux	Distributeur $5 / 2$ monstable Pilotage électropneumatique Bobine Y11 24 V CC	Pas de capteurs
POSTE C: MONTAGE CHASSIS		
ACTIONNEURS	PREACTIONNEURS	CAPTEURS
Vérin double effet à piston magnétique Fonction: prise et dépose du chassis	Distributeur $5 / 2$ monstable Pilotage électropneumatique Bobine Y21 24 VCC	2 capteurs de position ILS à EC S20: tige vérin 2A rentrée S21: tige vérin 2A sortie
Vérin double effet à piston magnétique Fonction: recul - avance du chassis	Distributeur $5 / 2$ monstable Pilotage électropneumatique Bobine Y31 24 V CC 3 V1	2 capteurs de position ILS à EC S30: tige vérin 2A sortie S31: tige vérin $2 A$ rentrée
Venturi Fonction: créer dépression	Distributeur $5 / 2$ monstable Pilotage électropneumatique Bobine Y41 24 V CC	1 détecteur de présence de vide (vacuostat) S41 à EC Type PNP
POSTE P: TRANSFERT DE LA PLAQUE		
ACTIONNEURS	PREACTIONNEURS	CAPTEURS
Vérin double effet à piston magn, double amortissmt réglable Fonction: avance - recul plaque 5A	Distributeur $5 / 2$ monstable Pilotage électropneumatique Bobine Y51 24 V CC	2 capteurs de position ILS à EC S50: tige vérin 2A rentrée S51: tige vérin 2A sortie
Vérin double effet à piston magnétique Fonction: indexage de la plaque	Distributeur 5/2 monstable Pilotage électropneumatique Bobine Y61 24 VCC	1 capteur de position ILS à EC S61: tige vérin 6A sortie
POSTE S: SERTISSAGE		
ACTIONNEURS	PREACTIONNEURS	CAPTEURS
Vérin impacteur double effet Fonction: sertissage	Distributeur $5 / 2$ monstable Pilotage électropneumatique Bobine Y71 24 VCC 7 V	1 détecteur de fin de course transistorisé à induction (DPI) Type: PNP S70:tige vérin 7A rentrée

TABLEAU D'AFFECTATION DES ENTREES-SORTIES API

ALIM	REP API	MNEMONIQUE	COMMENTAIRES - FONCTIONS
$\begin{aligned} & \text { ENTREES } \\ & 24 \mathrm{~V} \text { CC } \end{aligned}$	1 0,0	Run/Stop	Run/Stop API
	1 0,1	Sauto/Smanu	BT 2 positions. fixes; Sauto I0,1 Smanu /I0,1
	1 0,2	Karu	Présence énergies
	1 0,3		
	1 0,4	Sdcy	BP départ cycle
	1 0,5	Sse	BT 2 positions fixes à clef pour le sertissage
	I 0,6	Srd	Capteur présence roues droites
	I 0,7	Srg	Capteur présence roues gauches
	1 0,8	S20	Capt tige rentrée de 2A (montée chassis)
	1 0,9	S21	Capt tige sortie de 2A (descente chassis)
	10,10	S30	Capt tige sortie de 3A (avance chassis)
	10,11	S31	Capt tige rentrée de 3A (recul chassis)
	10,12	S70	Capt tige rentrée de 7A (impacteur rentré)
	10,13	S41	Capteur présence vide
	10,14	S51	Capt tige sortie de 5A (avance plaque)
	10,15	S50	Capt tige rentrée de 5A (recul plaque)
	10,16	S61	Capt tige sortie de 6A (indexage sorti)
	10,17	Sch	Capteur plaque en position initiale
	10,18	Sap	BT Cde manu Avance plaque
	10,19	Sin	BT Cde manu Indexage
	10,20	Sdc	BT Cde manu Descente du châssis
	I 0,21	Src	BT Cde manu Recul du châssis
	10,24	Sv	BT Cde manu réalisant le vide (venturi)
	10,25	Sar	BT Cde manu Avance des roues (distr roues)
ALIM	REP API	MNEMONIQUE	COMMENTAIRES - FONCTIONS
	O 0,0	Sécurité	Chien de garde API
SORTIES$24 \mathrm{~V} \mathrm{CC}$	O 0,1	HARU	Voyant arrêt d'urgence
	O 0,2	Y21	Bobine sortie tige vérin 2 A (descente châssis)
	O 0,3	Y31	Bobine rentrée tige vérin 3A (recul châssis)
	O 0,4	Y41	Bobine alimentation venturi 4A (prise châssis)
	O 0,5	Y51	Bobine sortie tige vérin 5A (avance plaque)
	O 0,6	Y61	Bobine sortie tige vérin 6A (indexage)
	O 0,7	Y71	Bobine sortie tige vérin 7A (sertissage)
	O 0,8	HDV	Voyant défaut de vide
	O 0,9	HDR	Voyant défaut roues
	O 0,10	Y11	Bobine sortie tige vérin 1A (distributeur roues)
	O 0,11	HCl	Voyant conditions initiales

